The number of limit cycles of a quintic polynomial system
نویسندگان
چکیده
In this paper we consider the bifurcation of limit cycles of the system ˙ x = y(x 2 − a 2)(y 2 − b 2) + εP(x, y), ˙ y = −x(x 2 − a 2)(y 2 − b 2) + εQ (x, y) for ε sufficiently small, where a, b ∈ R − {0}, and P, Q are polynomials of degree n, we obtain that up to first order in ε the upper bounds for the number of limit cycles that bifurcate from the period annulus of the quintic center given by ε = 0 are (3/2)(n + sin 2 (nπ /2)) + 1 if a = b and n − 1 if a = b. Moreover, there are systems with at least (3/2)(n + sin 2 (nπ /2)) + 1 if a = b and, n − 1 limit cycles if a = b.
منابع مشابه
Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation
This paper intends to explore the bifurcation of limit cycles for planar polynomial systems with even number of degrees. To obtain the maximum number of limit cycles, a sixth-order polynomial perturbation is added to a quintic Hamiltonian system, and both local and global bifurcations are considered. By employing the detection function method for global bifurcations of limit cycles and the norm...
متن کاملLINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS
We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
متن کاملThe number of limit cycles of a quintic Hamiltonian system with perturbation
We consider number of limit cycles of perturbed quintic Hamiltonian system with perturbation in the form of (2n+2m) or (2n+2m+1) degree polynomials. We show that the perturbed system has at most n + 2m limit cycles. For m = 1 and n = 1 we showed that the perturbed system can have at most one limit cycles. If m = 1 and n = 2 we give some general conditions based on coefficients of the perturbed ...
متن کاملTen Limit Cycles in a Quintic Lyapunov System
In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 10 quasi Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there exist 10 small ...
متن کاملAn Improved Lower Bound on the Number of Limit Cycles Bifurcating from a quintic Hamiltonian Planar Vector Field under quintic Perturbation
The limit cycle bifurcations of a Z2 equivariant quintic planar Hamiltonian vector field under Z2 equivariant quintic perturbation is studied. We prove that the given system can have at least 27 limit cycles. This is an improved lower bound on the possible number of limit cycles that can bifurcate from a quintic planar Hamiltonian system under quintic perturbation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 57 شماره
صفحات -
تاریخ انتشار 2009